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Abstract
In the present paper the non-Noether symmetries of the Toda model, nonlinear
Schrödinger equation and Korteweg–de Vries equations (KdV and mKdV)
are discussed. It appears that these symmetries yield the complete sets of
conservation laws in involution and lead to the bi-Hamiltonian realizations of
the above-mentioned models.

PACS numbers: 02.30.Ik, 05.45.Yv
Mathematics Subject Classification: 70H33, 70H06, 58J70, 53Z05, 35A30

Because of their exceptional properties the non-Noether symmetries could be effectively used
in analysis of Hamiltonian dynamical systems. From the geometric point of view these
symmetries are important because of their tight relationship with geometric structures on
phase space such as bi-Hamiltonian structures, Frölicher–Nijenhuis operators, Lax pairs and
bicomplexes [1]. The correspondence between non-Noether symmetries and conservation laws
is also interesting and in regular Hamiltonian systems on 2n-dimensional Poisson manifold
up to n integrals of motion could be associated with each generator of non-Noether symmetry
[1, 3]. As a result non-Noether symmetries could be especially useful in analysis
of Hamiltonian systems with many degrees of freedom, as well as infinite-dimensional
Hamiltonian systems, where a large (and even infinite) number of conservation laws could be
constructed from the single generator of such a symmetry. Under certain conditions satisfied by
the symmetry generator these conservation laws appear to be involutive and ensure integrability
of the dynamical system.

The n-particle non-periodic Toda model is one of integrable models that possesses such a
nontrivial symmetry. In this model non-Noether symmetry (which is a one-parameter group
of noncannonical transformations) yields conservation laws that appear to be functionally
independent, involutive and ensure the integrability of this dynamical system. The well-
known bi-Hamiltonian realization of the Toda model is also related to this symmetry.

The nonlinear Schrödinger equation is another important example where symmetry (again
a one-parameter group) leads to the infinite sequence of conservation laws in involution. The
KdV and mKdV equations also possess non-Noether symmetries which are quite nontrivial (but
the symmetry group is still one-parameter) and in each model the infinite set of conservation
laws is associated with the single generator of the symmetry.
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Before we consider these models in detail we briefly recall some basic facts concerning
symmetries of Hamiltonian systems. Since throughout the paper continuous one-parameter
groups of symmetries play a central role, let us recall that each vector field E on the phase
space M of the Hamiltonian dynamical system defines a continuous one-parameter group of
transformations (flow)

ga = eaLE (1)

where LE denotes the Lie derivative along the vector field E. The action of this group on
observables (smooth functions on M) is given by the expansion

ga(f ) = eaLE (f ) = f + aLEf + 1
2a2L2

Ef + · · · . (2)

Further it will be assumed that M is a 2n-dimensional symplectic manifold and the group of
transformations ga will be called a symmetry of the Hamiltonian system if it preserves the
manifold of solutions of Hamilton’s equation

d

dt
f = {h, f } (3)

(here {,} denotes the Poisson bracket defined in a standard manner by the Poisson bivector
field {f, g} = W(df ∧ dg) and h is a smooth function on M called the Hamiltonian) or in
other words if for each f satisfying Hamilton’s equation ga(f ) also satisfies it. This happens
when ga commutes with the time evolution operator

d

dt
ga(f ) = ga

(
d

dt
f

)
. (4)

If in addition the generator E of the group ga does not preserve Poisson bracket structure
[E,W ] �= 0 then the ga is called non-Noether symmetry. Note that bracket [,] known
as the Schouten bracket or supercommutator is actually a graded extension of the ordinary
commutator of vector fields to the case of multivector fields, and could be defined by linearity
and derivation property

[C1 ∧ C2 ∧ . . . ∧ Cn, S1 ∧ S2 ∧ . . . ∧ Sn]

= (−1)p+q [Cp, Sq] ∧ C1 ∧ C2 ∧ . . . ∧ Ĉp ∧ . . . ∧ Cn ∧ S1 ∧ S2 ∧ . . . ∧ Ŝq ∧ . . . ∧ Sn (5)

where an overhat denotes the omission of the corresponding vector field.
Let us briefly recall some basic features of non-Noether symmetries. First of all, if E

generates non-Noether symmetry then the n functions

Yk = iWk (LEω)k k = 1, 2, . . . , n (6)

(where ω is the symplectic form obtained by inverting Poisson bivector W and i denotes the
contraction) are integrals of motion (see [1, 3]). Note that in the finite-dimensional case,
conservation laws (6) can be calculated using the formula

Yk = n!

(n − k)!k!

Ŵ k ∧ Wn−k

Wn
k = 1, 2, . . . , n (7)

where Ŵ = [E,W ]. The ratio of multivectors is defined correctly since the space of maximal
degree multivectors is one dimensional. The advantage of this expression is that there is
no need to invert W , but unfortunately it can be used only in the finite-dimensional case
(otherwise multivectors such as Wn do not exist). It is also known that if additionally the
symmetry generator E satisfies the Yang–Baxter equation

[[E[E,W ]]W ] = 0 (8)
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conservation laws Yk appear to be in involution {Yk, Ym} = 0 while the bivector fields W and
Ŵ = [E,W ] (or in terms of 2-forms ω and LEω) form a bi-Hamiltonian system (see [1]).
Due to these features non-Noether symmetries could be effectively used in construction of
conservation laws and bi-Hamiltonian structures.

Now let us focus on non-Noether symmetry of the Toda model—a 2n-dimensional
Hamiltonian system that describes the motion of n particles on the line governed by the
exponential interaction. The equations of motion of the non-periodic n-particle Toda model
are

d

dt
qi = pi

d

dt
pi = ε(i − 1) eqi−1−qi − ε(n − i) eqi−qi+1 (9)

(ε(k) = −ε(−k) = 1 for any natural k and ε(0) = 0) and could be rewritten in Hamiltonian
form (3) with canonical Poisson bracket defined by

W =
n∑

i=1

∂

∂pi

∧ ∂

∂qi

(10)

corresponding symplectic form

ω =
n∑

i=1

dpi ∧ dqi (11)

and Hamiltonian equal to

h = 1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1 . (12)

The group of transformations ga generated by the vector field E will be a symmetry of the Toda
chain if for each pi, qi satisfying Toda equations (9) ga(pi), ga(qi) also satisfy it. Substituting
infinitesimal transformations

ga(pi) = pi + aE(pi) + O(a2) ga(pi) = qi + aE(qi) + O(a2) (13)

into (9) and grouping first-order terms gives rise to the conditions

d

dt
E(qi) = E(pi)

(14)
d

dt
E(pi) = ε(i − 1) eqi−1−qi (E(qi−1) − E(qi)) − ε(n − i) eqi−qi+1(E(qi) − E(qi+1)).

One can verify that the vector field defined by

E(pi) = 1

2
p2

i + ε(i − 1)(n − i + 2) eqi−1−qi − ε(n − i)(n − i) eqi−qi+1

+
t

2
(ε(i − 1)(pi−1 + pi) eqi−1−qi − ε(n − i)(pi + pi+1) eqi−qi+1)

E(qi) = (n − i + 1)pi − 1

2

i−1∑
k=1

pk +
1

2

n∑
k=i+1

pk

+
t

2

(
p2

i + ε(i − 1) eqi−1−qi + ε(n − i) eqi−qi+1
)

(15)

satisfies (14) and generates symmetry of the Toda chain. It appears that this symmetry is
non-Noether since it does not preserve Poisson bracket structure [E,W ] �= 0 and additionally
one can check that Yang–Baxter equation [[E[E,W ]]W ] = 0 is satisfied. This symmetry
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could play an important role in the analysis of the Toda model. First let us note that calculating
LEω leads to the following 2-form,

LEω =
n∑

i=1

pi dpi ∧ dqi +
n−1∑
i=1

eqi−qi+1 dqi ∧ dqi+1 +
∑
i<j

dpi ∧ dpj (16)

and together ω and LEω give rise to bi-Hamiltonian structure of the Toda model (compare
with [2]). By taking the Lie derivative of the Poisson bivector field W along symmetry one
reproduces the second bivector field

Ŵ = [E,W ] =
n∑

i=1

pi

∂

∂pi

∧ ∂

∂qi

+
n−1∑
i=1

eqi−qi+1
∂

∂pi

∧ ∂

∂pi+1
+

∑
i<j

∂

∂qi

∧ ∂

∂qj

(17)

involved in the bi-Hamiltonian realization of the Toda chain. The conservation laws (6)
associated with the symmetry reproduce the well-known set of conservation laws of the Toda
chain,

I1 = Y1 =
n∑

i=1

pi

I2 = 1

2
Y 2

1 − Y2 = 1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1

I3 = 1

3
Y 3

1 − Y1Y2 + Y3 = 1

3

n∑
i=1

p3
i +

n−1∑
i=1

(pi + pi+1) eqi−qi+1

(18)
I4 = 1

4
Y 4

1 − Y 2
1 Y2 +

1

2
Y 2

2 + Y1Y3 − Y4

= 1

4

n∑
i=1

p4
i +

n−1∑
i=1

(
p2

i + 2pipi+1 + p2
i+1

)
eqi−qi+1 +

1

2

n−1∑
i=1

e2(qi−qi+1) +
n−2∑
i=1

eqi−qi+2

Im = (−1)mYm + m−1
m−1∑
k=1

(−1)kIm−kYk.

To shed more light on expression (7) let us calculate Y1 in detail. Calculating multivector
fields Wn and Ŵ ∧ Wn−1 gives rise to

Wn = n
∂

∂p1
∧ ∂

∂q1
∧ ∂

∂p2
∧ ∂

∂q2
∧ . . . ∧ ∂

∂pn

∧ ∂

∂qn

(19)

and

Ŵ ∧ Wn−1 =
n∑

k=1

pk

∂

∂p1
∧ ∂

∂q1
∧ ∂

∂p2
∧ ∂

∂q2
∧ . . . ∧ ∂

∂pn

∧ ∂

∂qn

(20)

while the ratio of these bivector fields reproduces the total momentum of the Toda chain.
The condition [[E[E,W ]]W ] = 0 satisfied by the generator of the symmetry E ensures that
the conservation laws are in involution, i.e. {Yk, Ym} = 0. Thus the conservation laws as
well as the bi-Hamiltonian structure of the non-periodic Toda chain appear to be associated
with non-Noether symmetry. Some other non-Noether symmetries of the Toda chain were
discussed in [5].

Unlike the Toda model the dynamical systems in our next examples are infinite
dimensional and in order to ensure integrability one should construct an infinite number of
conservation laws. Fortunately in several integrable models this task could be effectively done
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by identifying the appropriate non-Noether symmetry. First let us consider the well-known
infinite-dimensional integrable Hamiltonian system—the nonlinear Schrödinger equation
(NSE)

ψt = i(ψxx + 2ψ2ψ̄) (21)

where ψ is a smooth complex function of (t, x) ∈ R2. At this stage we will not specify any
boundary conditions and will just focus on symmetries of the NSE. Supposing that the vector
field E generates the symmetry of the NSE one gets the following restriction,

E(ψ)t = i[E(ψ)xx + 2ψ2E(ψ̄) + 4ψψ̄E(ψ)] (22)

(obtained by substituting infinitesimal transformation ψ → ψ + aE(ψ) + O(a2) generated by
E into the NSE). It appears that the NSE possesses a nontrivial symmetry that is generated by
the vector field

E(ψ) = i
(
ψx +

x

2
ψxx + ψφ + xψ2ψ̄

)
− t (ψxxx + 6ψψ̄ψx) (23)

(here φ is defined by φx = ψψ̄). In order to construct conservation laws we also need
to know the Poisson bracket structure and it appears that the invariant Poisson bivector
field could be defined if ψ is subjected to either periodic ψ(t,−∞) = ψ(t, +∞) or zero
ψ(t,−∞) = ψ(t, +∞) = 0 boundary conditions. In terms of variational derivatives the
explicit form of the Poisson bivector field is

W = i
∫ +∞

−∞
dx

δ

δψ
∧ δ

δψ̄
(24)

while the corresponding symplectic form obtained by inverting W is

ω = i
∫ +∞

−∞
dx δψ ∧ δψ̄. (25)

Now one can check that the NSE could be rewritten in Hamiltonian form

ψt = {h,ψ} (26)

with Poisson bracket {,} defined by W and

h =
∫ +∞

−∞
dx(ψ2ψ̄2 − ψxψ̄x). (27)

Knowing the symmetry of the NSE that appears to be non-Noether ([E,W ] �= 0) one can
construct bi-Hamiltonian structure and conservation laws. First let us calculate the Lie
derivative of symplectic form along the symmetry generator

LEω =
∫ +∞

−∞
[δψx ∧ δψ̄ + ψδφ ∧ δψ̄ + ψ̄δφ ∧ δψ] dx. (28)

The couple of 2-forms ω and LEω exactly reproduces the bi-Hamiltonian structure of the
NSE proposed by Magri [4] while the conservation laws associated with this symmetry are
well-known conservation laws of the NSE

I1 = Y1 = 2
∫ +∞

−∞
ψψ̄ dx

I2 = Y 2
1 − 2Y2 = i

∫ +∞

−∞
(ψ̄xψ − ψxψ̄) dx

I3 = Y 3
1 − 3Y1Y2 + 3Y3 = 2

∫ +∞

−∞
(ψ2ψ̄2 − ψxψ̄x) dx
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I4 = Y 4
1 − 4Y 2

1 Y2 + 2Y 2
2 + 4Y1Y3 − 4Y4

=
∫ +∞

−∞
[i(ψ̄xψxx − ψxψ̄xx) + 3i(ψ̄ψ2ψ̄x − ψψ̄2ψx)] dx

Im = (−1)mmYm +
m−1∑
k=1

(−1)kIm−kYk.

(29)

The involutivity of the conservation laws of the NSE {Yk, Ym} = 0 is related to the fact that E
satisfies the Yang–Baxter equation [[E[E,W ]]W ] = 0. Another class of symmetries of the
NSE was discussed in [6].

Now let us consider other important integrable models—the Korteweg–de Vries equation
(KdV) and modified Korteweg–de Vries equation (mKdV). Here symmetries are more
complicated but the generator of the symmetry can still be identified and used in the
construction of conservation laws. The KdV and mKdV equations have the following form:

ut + uxxx + uux = 0 [KdV] (30)

and

ut + uxxx − 6u2ux = 0 [mKdV] (31)

(here u is a smooth function of (t, x) ∈ R2). The generators of symmetries of KdV and mKdV
should satisfy conditions

E(u)t + E(u)xxx + uxE(u) + uE(u)x = 0 [KdV] (32)

and

E(u)t + E(u)xxx − 12uuxE(u) − 6u2E(u)x = 0 [mKdV] (33)

(again these conditions are obtained by substituting infinitesimal transformation u →
u + aE(u) + O(a2) into KdV and mKdV, respectively). Further we will focus on the
symmetries generated by the following vector fields,

E(u) = 1

2
uxx +

1

6
u2 +

1

24
uxv +

x

8
(uxxx + uux)

− t

16
(6uxxxxx + 20uxuxx + 10uuxxx + 5u2ux) [KdV] (34)

and

E(u) = −3

2
uxx + 2u3 + uxw − x

2
(uxxx − 6u2ux)

− 3t

2

(
uxxxxx − 10u2uxxx − 40uuxuxx − 10u3

x + 30u4ux

)
[mKdV] (35)

(here v and w are defined by vx = u and wx = u2). To construct conservation laws we
need to know the Poisson bracket structure and again as in the case of the NSE the Poisson
bivector field is well defined when u is subjected to either periodic u(t,−∞) = u(t, +∞) or
zero u(t,−∞) = u(t, +∞) = 0 boundary conditions. For both KdV and mKdV the Poisson
bivector field is

W =
∫ +∞

−∞
dx

δ

δu
∧ δ

δv
(36)

with the corresponding symplectic form

ω =
∫ +∞

−∞
dx δu ∧ δv (37)
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leading to the Hamiltonian realization of the KdV and mKdV equations

ut = {h, u} (38)

with Hamiltonians

h =
∫ +∞

−∞

(
u2

x − u3

3

)
dx [KdV] (39)

and

h =
∫ +∞

−∞

(
u2

x + u4) dx [mKdV]. (40)

By taking the Lie derivative of the symplectic form along the generators of the symmetries
one gets another couple of symplectic forms

LEω =
∫ +∞

−∞
dx

(
δu ∧ δux + 2

3uδu ∧ δv
)

[KdV] (41)

LEω =
∫ +∞

−∞
dx(δu ∧ δux − 2uδu ∧ δw) [mKdV] (42)

involved in the bi-Hamiltonian realization of KdV/mKdV hierarchies and proposed by Magri
[4]. The conservation laws associated with the symmetries reproduce an infinite sequence of
conservation laws of the KdV equation

I1 = Y1 = 2

3

∫ +∞

−∞
u dx

I2 = Y1 − 2Y2 = 4

9

∫ +∞

−∞
u2 dx

I3 = Y 3
1 − 3Y1Y2 + 3Y3 = 8

9

∫ +∞

−∞

(
u3

3
− u2

x

)
dx

(43)
I4 = Y 4

1 − 4Y 2
1 Y2 + 2Y 2

2 + 4Y1Y3 − 4Y4

= 64

45

∫ +∞

−∞

(
5

36
u4 − 5

3
uu2

x + u2
xx

)
dx

Im = (−1)mmYm +
m−1∑
k=1

(−1)kIm−kYk

and the mKdV equation

I1 = Y1 = −4
∫ +∞

−∞
u2 dx

I2 = Y1 − 2Y2 = 16
∫ +∞

−∞

(
u4 + u2

x

)
dx

I3 = Y 3
1 − 3Y1Y2 + 3Y3 = −32

∫ +∞

−∞

(
2u6 + 10u2u2

x + u2
xx

)
dx

(44)
I4 = Y 4

1 − 4Y 2
1 Y2 + 2Y 2

2 + 4Y1Y3 − 4Y4

= 256

5

∫ +∞

−∞

(
5u8 + 70u4u2

x − 7u4
x + 14u2u2

xx + u2
xxx

)
dx

Im = (−1)mmYm +
m−1∑
k=1

(−1)kIm−kYk
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The involutivity of these conservation laws is well known and in terms of the symmetry
generators it is ensured by conditions [[E[E,W ]]W ] = 0. Thus the conservation laws
and bi-Hamiltonian structures of KdV and mKdV hierarchies are related to the non-Noether
symmetries of KdV and mKdV equations.

The purpose of the present paper was to illustrate some features of non-Noether
symmetries discussed in [1] and to show that in several important integrable models the
existence of complete sets of conservation laws could be related to such symmetries.
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